Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 711
Filtrar
1.
Nature ; 628(8006): 180-185, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480886

RESUMO

The gut microbiome has major roles in modulating host physiology. One such function is colonization resistance, or the ability of the microbial collective to protect the host against enteric pathogens1-3, including enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, an attaching and effacing (AE) food-borne pathogen that causes severe gastroenteritis, enterocolitis, bloody diarrhea and acute renal failure4,5 (haemolytic uremic syndrome). Although gut microorganisms can provide colonization resistance by outcompeting some pathogens or modulating host defence provided by the gut barrier and intestinal immune cells6,7, this phenomenon remains poorly understood. Here, we show that activation of the neurotransmitter receptor dopamine receptor D2 (DRD2) in the intestinal epithelium by gut microbial metabolites produced upon dietary supplementation with the essential amino acid L-tryptophan protects the host against Citrobacter rodentium, a mouse AE pathogen that is widely used as a model for EHEC infection8,9. We further find that DRD2 activation by these tryptophan-derived metabolites decreases expression of a host actin regulatory protein involved in C. rodentium and EHEC attachment to the gut epithelium via formation of actin pedestals. Our results reveal a noncanonical colonization resistance pathway against AE pathogens that features an unconventional role for DRD2 outside the nervous system in controlling actin cytoskeletal organization in the gut epithelium. Our findings may inspire prophylactic and therapeutic approaches targeting DRD2 with dietary or pharmacological interventions to improve gut health and treat gastrointestinal infections, which afflict millions globally.


Assuntos
Citrobacter rodentium , Mucosa Intestinal , Receptores de Dopamina D2 , Triptofano , Animais , Feminino , Humanos , Masculino , Camundongos , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Carga Bacteriana/efeitos dos fármacos , Citrobacter rodentium/crescimento & desenvolvimento , Citrobacter rodentium/metabolismo , Citrobacter rodentium/patogenicidade , Suplementos Nutricionais , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Escherichia coli O157/patogenicidade , Escherichia coli O157/fisiologia , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Receptores de Dopamina D2/metabolismo , Triptofano/administração & dosagem , Triptofano/metabolismo , Triptofano/farmacologia
2.
Gut Microbes ; 16(1): 2308049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38299318

RESUMO

Infectious diarrheal diseases are the third leading cause of mortality in young children, many of which are driven by Gram-negative bacterial pathogens. To establish successful host infections these pathogens employ a plethora of virulence factors necessary to compete with the resident microbiota, and evade and subvert the host defenses. The type II secretion system (T2SS) is one such conserved molecular machine that allows for the delivery of effector proteins into the extracellular milieu. To explore the role of the T2SS during natural host infection, we used Citrobacter rodentium, a murine enteric pathogen, as a model of human intestinal disease caused by pathogenic Escherichia coli such as Enteropathogenic and Enterohemorrhagic E. coli (EPEC and EHEC). In this study, we determined that the C. rodentium genome encodes one T2SS and 22 potential T2SS-secreted protein effectors, as predicted via sequence homology. We demonstrated that this system was functional in vitro, identifying a role in intestinal mucin degradation allowing for its utilization as a carbon source, and promoting C. rodentium attachment to a mucus-producing colon cell line. During host infection, loss of the T2SS or associated effectors led to a significant colonization defect and lack of systemic spread. In mice susceptible to lethal infection, T2SS-deficient C. rodentium was strongly attenuated, resulting in reduced morbidity and mortality in infected hosts. Together these data highlight the important role of the T2SS and its effector repertoire during C. rodentium pathogenesis, aiding in successful host mucosal colonization.


Assuntos
Infecções por Enterobacteriaceae , Escherichia coli Êntero-Hemorrágica , Microbioma Gastrointestinal , Sistemas de Secreção Tipo II , Criança , Humanos , Animais , Camundongos , Pré-Escolar , Citrobacter rodentium/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Infecções por Enterobacteriaceae/microbiologia
3.
Immun Inflamm Dis ; 12(2): e1157, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38415976

RESUMO

PURPOSE: Myeloperoxidase (MPO) has been identified as a mediator in various inflammatory diseases. Bacterial infection of the intestine and hypoxia can both lead to inflammatory responses, but the role of MPO in these phenomena remains unclear. METHODS: By building the MPO-/- mice, we evaluated relevant inflammatory factors and tissue damage in mice with intestinal Citrobacter rodentium infection and hypoxia. The body weight and excreted microorganisms were monitored. Intestinal tissues were collected 7 days after bacterial infection under hypoxia to undergo haematoxylin-eosin staining and assess the degree of pathological damage. ELISA assays were performed to quantify the serum levels of TNF-α, IFN-γ, IL-6, and IL-1ß inflammatory cytokines. PCR, WB, and IF assays were conducted to determine the expression of chemokines MCP1, MIP2, and KC in the colon and spleen. RESULTS: The C. rodentium infection and hypoxia caused weight loss, intestinal colitis, and splenic inflammatory cells active proliferation in wild-type mice. MPO deficiency alleviated this phenomenon. MPO-/- mice also displayed a significant decline in bacteria clearing ability. The level of TNF-α in the serum and spleen was both lower in MPO-/- hypoxia C. rodentium-infected mice than that in wild-type mice. The chemokines expression levels of MIP2, KC, and MCP1 in the spleen and colon of each bacterial infected group were significantly increased (p < .05), while in hypoxia, the factors in the spleen and colon were decreased (p < .05). MPO deficiency was found to lower the levels of these chemokines compared with wild-type mice. CONCLUSION: MPO plays an important role of the inflammatory responses in infectious enteritis and hypoxia in mice, and the loss of MPO may greatly reduce the body's inflammatory responses to fight diseases.


Assuntos
Infecções Bacterianas , Citrobacter rodentium , Erros Inatos do Metabolismo , Animais , Camundongos , Fator de Necrose Tumoral alfa , Peroxidase , Hipóxia , Quimiocinas
4.
Cell ; 187(3): 750-763.e20, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38242132

RESUMO

Breastfeeding offers demonstrable benefits to newborns and infants by providing nourishment and immune protection and by shaping the gut commensal microbiota. Although it has been appreciated for decades that breast milk contains complement components, the physiological relevance of complement in breast milk remains undefined. Here, we demonstrate that weanling mice fostered by complement-deficient dams rapidly succumb when exposed to murine pathogen Citrobacter rodentium (CR), whereas pups fostered on complement-containing milk from wild-type dams can tolerate CR challenge. The complement components in breast milk were shown to directly lyse specific members of gram-positive gut commensal microbiota via a C1-dependent, antibody-independent mechanism, resulting in the deposition of the membrane attack complex and subsequent bacterial lysis. By selectively eliminating members of the commensal gut community, complement components from breast milk shape neonate and infant gut microbial composition to be protective against environmental pathogens such as CR.


Assuntos
Proteínas do Sistema Complemento , Microbioma Gastrointestinal , Leite , Animais , Feminino , Humanos , Lactente , Camundongos , Bactérias , Aleitamento Materno , Citrobacter rodentium , Proteínas do Sistema Complemento/análise , Fatores Imunológicos , Saúde do Lactente , Leite Humano , Leite/química , Infecções por Enterobacteriaceae/imunologia
5.
Microbiol Spectr ; 12(1): e0226123, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38047703

RESUMO

IMPORTANCE: Enterohemorrhagic Escherichia coli (EHEC) remains an important cause of diarrheal disease and complications worldwide, especially in children, yet there are no available vaccines for human use. Inadequate pre-clinical evaluation due to inconsistent animal models remains a major barrier to novel vaccine development. We demonstrate the usefulness of Stx2d-producing Citrobacter rodentium in assessing vaccine effectiveness because it more closely recapitulates human disease caused by EHEC.


Assuntos
Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Nanopartículas Metálicas , Animais , Camundongos , Criança , Humanos , Infecções por Escherichia coli/prevenção & controle , Toxina Shiga , Citrobacter rodentium , Ouro
6.
PLoS Pathog ; 19(12): e1011576, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38109366

RESUMO

Mucosal immunity is critical to host protection from enteric pathogens and must be carefully controlled to prevent immunopathology. Regulation of immune responses can occur through a diverse range of mechanisms including bi-directional communication with neurons. Among which include specialized sensory neurons that detect noxious stimuli due to the expression of transient receptor potential vanilloid receptor 1 (TRPV1) ion channel and have a significant role in the coordination of host-protective responses to enteric bacterial pathogens. Here we have used the mouse-adapted attaching and effacing pathogen Citrobacter rodentium to assess the specific role of TRPV1 in coordinating the host response. TRPV1 knockout (TRPV1-/-) mice had a significantly higher C. rodentium burden in the distal colon and fecal pellets compared to wild-type (WT) mice. Increased bacterial burden was correlated with significantly increased colonic crypt hyperplasia and proliferating intestinal epithelial cells in TRPV1-/- mice compared to WT. Despite the increased C. rodentium burden and histopathology, the recruitment of colonic T cells producing IFNγ, IL-17, or IL-22 was similar between TRPV1-/- and WT mice. In evaluating the innate immune response, we identified that colonic neutrophil recruitment in C. rodentium infected TRPV1-/- mice was significantly reduced compared to WT mice; however, this was independent of neutrophil development and maturation within the bone marrow compartment. TRPV1-/- mice were found to have significantly decreased expression of the neutrophil-specific chemokine Cxcl6 and the adhesion molecules Icam1 in the distal colon compared to WT mice. Corroborating these findings, a significant reduction in ICAM-1 and VCAM-1, but not MAdCAM-1 protein on the surface of colonic blood endothelial cells from C. rodentium infected TRPV1-/- mice compared to WT was observed. These findings demonstrate the critical role of TRPV1 in regulating the host protective responses to enteric bacterial pathogens, and mucosal immune responses.


Assuntos
Infecções por Enterobacteriaceae , Mucosa Intestinal , Camundongos , Animais , Mucosa Intestinal/metabolismo , Colo/patologia , Citrobacter rodentium , Células Endoteliais/metabolismo , Imunidade Inata , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
7.
Sci Rep ; 13(1): 22368, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102166

RESUMO

The intestinal immune response is crucial in maintaining a healthy gut, but the enhanced migration of macrophages in response to pathogens is a major contributor to disease pathogenesis. Integrins are ubiquitously expressed cellular receptors that are highly involved in immune cell adhesion to endothelial cells while in the circulation and help facilitate extravasation into tissues. Here we show that specific deletion of the Tln1 gene encoding the protein talin-1, an integrin-activating scaffold protein, from cells of the myeloid lineage using the Lyz2-cre driver mouse reduces epithelial damage, attenuates colitis, downregulates the expression of macrophage markers, decreases the number of differentiated colonic mucosal macrophages, and diminishes the presence of CD68-positive cells in the colonic mucosa of mice infected with the enteric pathogen Citrobacter rodentium. Bone marrow-derived macrophages lacking expression of Tln1 did not exhibit a cell-autonomous phenotype; there was no impaired proinflammatory gene expression, nitric oxide production, phagocytic ability, or surface expression of CD11b, CD86, or major histocompatibility complex II in response to C. rodentium. Thus, we demonstrate that talin-1 plays a role in the manifestation of infectious colitis by increasing mucosal macrophages, with an effect that is independent of macrophage activation.


Assuntos
Colite , Infecções por Enterobacteriaceae , Animais , Camundongos , Citrobacter rodentium , Colite/genética , Colite/prevenção & controle , Colo/patologia , Células Endoteliais/metabolismo , Infecções por Enterobacteriaceae/metabolismo , Inflamação/patologia , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Talina/genética , Talina/metabolismo
8.
Molecules ; 28(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37959788

RESUMO

This study is part of the work investigating bioactive fruit enzymes as sustainable alternatives to parasite anthelmintics that can help reverse the trend of lost efficacy. The study looked to define biological and molecular interactions that demonstrate the ability of the pomegranate extract punicalagin against intracellular parasites. The study compared transcriptomic reads of two distinct conditions. Condition A was treated with punicalagin (PA) and challenged with Citrobacter rodentium, while condition B (CM) consisted of a group that was challenged and given mock treatment of PBS. To understand the effect of punicalagin on transcriptomic changes between conditions, a differential correlation analysis was conducted. The analysis examined the regulatory connections of genes expressed between different treatment conditions by statistically querying the relationship between correlated gene pairs and modules in differing conditions. The results indicated that punicalagin treatment had strong positive correlations with the over-enriched gene ontology (GO) terms related to oxidoreductase activity and lipid metabolism. However, the GO terms for immune and cytokine responses were strongly correlated with no punicalagin treatment. The results matched previous studies that showed punicalagin to have potent antioxidant and antiparasitic effects when used to treat parasitic infections in mice and livestock. Overall, the results indicated that punicalagin enhanced the effect of tissue-resident genes.


Assuntos
Citrobacter rodentium , Transcriptoma , Camundongos , Animais , Taninos Hidrolisáveis/farmacologia , Antioxidantes/análise
9.
J Immunol ; 211(12): 1823-1834, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37902285

RESUMO

Heme-oxidized IRP2 ubiquitin ligase-1 (HOIL1)-deficient patients experience chronic intestinal inflammation and diarrhea as well as increased susceptibility to bacterial infections. HOIL1 is a component of the linear ubiquitin chain assembly complex that regulates immune signaling pathways, including NF-κB-activating pathways. We have shown previously that HOIL1 is essential for survival following Citrobacter rodentium gastrointestinal infection of mice, but the mechanism of protection by HOIL1 was not examined. C. rodentium is an important murine model for human attaching and effacing pathogens, enteropathogenic and enterohemorrhagic Escherichia coli that cause diarrhea and foodborne illnesses and lead to severe disease in children and immunocompromised individuals. In this study, we found that C. rodentium infection resulted in severe colitis and dissemination of C. rodentium to systemic organs in HOIL1-deficient mice. HOIL1 was important in the innate immune response to limit early replication and dissemination of C. rodentium. Using bone marrow chimeras and cell type-specific knockout mice, we found that HOIL1 functioned in radiation-resistant cells and partly in radiation-sensitive cells and in myeloid cells to limit disease, but it was dispensable in intestinal epithelial cells. HOIL1 deficiency significantly impaired the expansion of group 3 innate lymphoid cells and their production of IL-22 during C. rodentium infection. Understanding the role HOIL1 plays in type 3 inflammation and in limiting the pathogenesis of attaching and effacing lesion-forming bacteria will provide further insight into the innate immune response to gastrointestinal pathogens and inflammatory disorders.


Assuntos
Infecções por Enterobacteriaceae , Imunidade Inata , Criança , Humanos , Animais , Camundongos , Citrobacter rodentium/fisiologia , Ligases , Linfócitos/patologia , Colo/patologia , Inflamação/patologia , Diarreia/patologia , Ubiquitinas , Camundongos Endogâmicos C57BL
10.
Infect Immun ; 91(11): e0032223, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37800916

RESUMO

One of the major contributors to child mortality in the world is diarrheal diseases, with an estimated 800,000 deaths per year. Many pathogens are causative agents of these illnesses, including the enteropathogenic or enterohemorrhagic forms of Escherichia coli. These bacteria are characterized by their ability to cause attaching and effacing lesions in the gut mucosa. Although much has been learned about the pathogenicity of these organisms and the immune response against them, the role of the intestinal microbiota during these infections is not well characterized. Infection of mice with E. coli requires pre-treatment with antibiotics in most mouse models, which hinders the study of the microbiota in an undisturbed environment. Using Citrobacter rodentium as a murine model for attaching and effacing bacteria, we show that C57BL/6 mice deficient in granzyme B expression are highly susceptible to severe disease caused by C. rodentium infection. Although a previous publication from our group shows that granzyme B-deficient CD4+ T cells are partially responsible for this phenotype, in this report, we present data demonstrating that the microbiota, in particular members of the order Turicibacterales, have an important role in conferring resistance. Mice deficient in Turicibacter sanguinis have increased susceptibility to severe disease. However, when these mice are co-housed with resistant mice or colonized with T. sanguinis, susceptibility to severe infection is reduced. These results clearly suggest a critical role for this commensal in the protection against enteropathogens.


Assuntos
Infecções por Enterobacteriaceae , Escherichia coli , Criança , Humanos , Animais , Camundongos , Citrobacter rodentium/genética , Granzimas , Infecções por Enterobacteriaceae/microbiologia , Camundongos Endogâmicos C57BL , Bactérias
11.
Gut Microbes ; 15(2): 2267189, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37842938

RESUMO

Quorum Sensing (QS) is a form of cell-to-cell communication that enables bacteria to modify behavior according to their population density. While QS has been proposed as a potential intervention against pathogen infection, QS-mediated communication within the mammalian digestive tract remains understudied. Using an LC-MS/MS approach, we discovered that Citrobacter rodentium, a natural murine pathogen used to model human infection by pathogenic Escherichia coli, utilizes the CroIR system to produce three QS-molecules. We then profiled their accumulation both in vitro and across different gastrointestinal sites over the course of infection. Importantly, we found that in the absence of QS capabilities the virulence of C. rodentium is enhanced. This highlights the role of QS as an effective mechanism to regulate virulence according to the pathogen's spatio-temporal context to optimize colonization and transmission success. These results also demonstrate that inhibiting QS may not always be an effective strategy for the control of virulence.


Assuntos
Microbioma Gastrointestinal , Percepção de Quorum , Humanos , Animais , Camundongos , Virulência , Citrobacter rodentium , Cromatografia Líquida , Espectrometria de Massas em Tandem , Trato Gastrointestinal , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Mamíferos
12.
Proc Natl Acad Sci U S A ; 120(28): e2301115120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399418

RESUMO

Enteric bacterial pathogens pose significant threats to human health; however, the mechanisms by which they infect the mammalian gut in the face of daunting host defenses and an established microbiota remain poorly defined. For the attaching and effacing (A/E) bacterial family member and murine pathogen Citrobacter rodentium, its virulence strategy likely involves metabolic adaptation to the host's intestinal luminal environment, as a necessary precursor to reach and infect the mucosal surface. Suspecting this adaptation involved the intestinal mucus layer, we found that C. rodentium was able to catabolize sialic acid, a monosaccharide derived from mucins, and utilize it as its sole carbon source for growth. Moreover, C. rodentium also sensed and displayed chemotactic activity toward sialic acid. These activities were abolished when the nanT gene, encoding a sialic acid transporter, was deleted (ΔnanT). Correspondingly, the ΔnanT C. rodentium strain was significantly impaired in its ability to colonize the murine intestine. Intriguingly, sialic acid was also found to induce the secretion of two autotransporter proteins, Pic and EspC, which possess mucinolytic and host-adherent properties. As a result, sialic acid enhanced the ability of C. rodentium to degrade intestinal mucus (through Pic), as well as to adhere to intestinal epithelial cells (through EspC). We thus demonstrate that sialic acid, a monosaccharide constituent of the intestinal mucus layer, functions as an important nutrient and a key signal for an A/E bacterial pathogen to escape the colonic lumen and directly infect its host's intestinal mucosa.


Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Animais , Camundongos , Bactérias , Citrobacter , Infecções por Enterobacteriaceae/microbiologia , Mucosa Intestinal/microbiologia , Mamíferos , Monossacarídeos , Ácido N-Acetilneuramínico
13.
Int Rev Cell Mol Biol ; 377: 65-86, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37268351

RESUMO

Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are human enteric pathogens that contribute significantly to morbidity and mortality worldwide. These extracellular pathogens attach intimately to intestinal epithelial cells and cause signature lesions by effacing the brush border microvilli, a property they share with other "attaching and effacing" (A/E) bacteria, including the murine pathogen Citrobacter rodentium. A/E pathogens use a specialized apparatus called a type III secretion system (T3SS) to deliver specific proteins directly into the host cytosol and modify host cell behavior. The T3SS is essential for colonization and pathogenesis, and mutants lacking this apparatus fail to cause disease. Thus, deciphering effector-induced host cell modifications is critical for understanding A/E bacterial pathogenesis. Several of the ∼20-45 effector proteins delivered into the host cell modify disparate mitochondrial properties, some via direct interactions with the mitochondria and/or mitochondrial proteins. In vitro studies have uncovered the mechanistic basis for the actions of some of these effectors, including their mitochondrial targeting, interaction partners, and consequent impacts on mitochondrial morphology, oxidative phosphorylation and ROS production, disruption of membrane potential, and intrinsic apoptosis. In vivo studies, mostly relying on the C. rodentium/mouse model, have been used to validate a subset of the in vitro observations; additionally, animal studies reveal broad changes to intestinal physiology that are likely accompanied by mitochondrial alterations, but the mechanistic underpinnings remain undefined. This chapter provides an overview of A/E pathogen-induced host alterations and pathogenesis, specifically focusing on mitochondria-targeted effects.


Assuntos
Células Epiteliais , Mitocôndrias , Animais , Humanos , Camundongos , Citrobacter rodentium/fisiologia
14.
Biochem Biophys Res Commun ; 669: 103-112, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37269592

RESUMO

Tumor necrosis factor receptor-associated factor 6 (TRAF6) plays a pivotal role in the induction of inflammatory responses not only in innate immune cells but also in non-immune cells, leading to the activation of adaptive immunity. Signal transduction mediated by TRAF6, along with its upstream molecule MyD88 in intestinal epithelial cells (IECs) is crucial for the maintenance of mucosal homeostasis following inflammatory insult. The IEC-specific TRAF6-deficient (TRAF6ΔIEC) and MyD88-deficient (MyD88ΔIEC) mice exhibit increased susceptibility to DSS-induced colitis, emphasizing the critical role of this pathway. Moreover, MyD88 also plays a protective role in Citrobacter rodentium (C. rodentium) infection-induced colitis. However, its pathological role of TRAF6 in infectious colitis remains unclear. To investigate the site-specific roles of TRAF6 in response to enteric bacterial pathogens, we infected TRAF6ΔIEC and dendritic cell (DC)-specific TRAF6-deficient (TRAF6ΔDC) mice with C. rodentium and found that the pathology of infectious colitis was exacerbated with significantly decreased survival rates in TRAF6ΔDC mice, but not in TRAF6ΔIEC mice, compared to those in control mice. TRAF6ΔDC mice showed increased bacterial burdens, marked disruption of epithelial and mucosal structures with increased infiltration of neutrophils and macrophages, and elevated cytokine levels in the colon at the late stages of infection. The frequencies of IFN-γ producing Th1 cells and IL-17A producing Th17 cells in the colonic lamina propria were significantly reduced in TRAF6ΔDC mice. Finally, we demonstrated that TRAF6-deficient DCs failed to produce IL-12 and IL-23 in response to C. rodentium stimulation, and to induce both Th1 and Th17 cells in vitro. Thus, TRAF6 signaling in DCs, but not in IECs, protects against colitis induced by C. rodentium infection by producing IL-12 and IL-23 that induce Th1 and Th17 responses in the gut.


Assuntos
Citrobacter rodentium , Colite , Animais , Camundongos , Citrobacter rodentium/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Células Th17 , Colite/patologia , Transdução de Sinais , Mucosa Intestinal/metabolismo , Colo/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Dendríticas/metabolismo , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Camundongos Endogâmicos C57BL , Células Th1/metabolismo
15.
Cell Rep ; 42(6): 112549, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37245209

RESUMO

Transfer of the gut microbiota from wild to laboratory mice alters the host's immune status and enhances resistance to infectious and metabolic diseases, but understanding of which microbes and how they promote host fitness is only emerging. Our analysis of metagenomic sequencing data reveals that Helicobacter spp. are enriched in wild compared with specific-pathogen-free (SPF) and conventionally housed mice, with multiple species commonly co-colonizing their hosts. We create laboratory mice harboring three non-SPF Helicobacter spp. to evaluate their effect on mucosal immunity and colonization resistance to the enteropathogen Citrobacter rodentium. Our experiments reveal that Helicobacter spp. interfere with C. rodentium colonization and attenuate C. rodentium-induced gut inflammation in wild-type (WT) mice, even preventing lethal infection in Rag2-/- SPF mice. Further analyses suggest that Helicobacter spp. interfere with tissue attachment of C. rodentium, putatively by reducing the availability of mucus-derived sugars. These results unveil pivotal protective functions of wild mouse microbiota constituents against intestinal infection.


Assuntos
Infecções por Enterobacteriaceae , Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Citrobacter rodentium , Imunidade Adaptativa , Camundongos Endogâmicos C57BL
16.
Cell Death Dis ; 14(4): 282, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37080966

RESUMO

Citrobacter rodentium is an enteropathogen that causes intestinal inflammatory responses in mice reminiscent of the pathology provoked by enteropathogenic and enterohemorrhagic Escherichia coli infections in humans. C. rodentium expresses various virulence factors that target specific signaling proteins involved in executing apoptotic, necroptotic and pyroptotic cell death, suggesting that each of these distinct cell death modes performs essential host defense functions that the pathogen aims to disturb. However, the relative contributions of apoptosis, necroptosis and pyroptosis in protecting the host against C. rodentium have not been elucidated. Here we used mice with single or combined deficiencies in essential signaling proteins controlling apoptotic, necroptotic or pyroptotic cell death to reveal the roles of these cell death modes in host defense against C. rodentium. Gastrointestinal C. rodentium infections in mice lacking GSDMD and/or MLKL showed that both pyroptosis and necroptosis were dispensable for pathogen clearance. In contrast, while RIPK3-deficient mice showed normal C. rodentium clearance, mice with combined caspase-8 and RIPK3 deficiencies failed to clear intestinal pathogen loads. Although this demonstrated a crucial role for caspase-8 signaling in establishing intestinal host defense, Casp8-/-Ripk3-/- mice remained capable of preventing systemic pathogen persistence. This systemic host defense relied on inflammasome signaling, as Casp8-/-Ripk3-/- mice with combined caspase-1 and -11 deletion succumbed to C. rodentium infection. Interestingly, although it is known that C. rodentium can activate the non-canonical caspase-11 inflammasome, selectively disabling canonical inflammasome signaling by single caspase-1 deletion sufficed to render Casp8-/-Ripk3-/- mice vulnerable to C. rodentium-induced lethality. Moreover, Casp8-/-Ripk3-/- mice lacking GSDMD survived a C. rodentium infection, suggesting that pyroptosis was not crucial for the protective functions of canonical inflammasomes in these mice. Taken together, our mouse genetic experiments revealed an essential cooperation between caspase-8 signaling and GSDMD-independent canonical inflammasome signaling to establish intestinal and systemic host defense against gastrointestinal C. rodentium infection.


Assuntos
Citrobacter rodentium , Inflamassomos , Animais , Humanos , Camundongos , Caspase 1/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Caspases/metabolismo , Citrobacter rodentium/metabolismo , Gasderminas , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL
17.
Nutrients ; 15(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37111109

RESUMO

Inflammatory bowel disease (IBD) has become a global public health challenge. Our previous study showed that barley leaf (BL) significantly reduces Citrobacter-rodentium (CR)-induced colitis, but its mechanism remains elusive. Thus, in this study, we used non-targeted metabolomics techniques to search for potentially effective metabolites. Our results demonstrated that dietary supplementation with BL significantly enriched arginine and that arginine intervention significantly ameliorated CR-induced colitis symptoms such as reduced body weight, shortened colon, wrinkled cecum, and swollen colon wall in mice; in addition, arginine intervention dramatically ameliorated CR-induced histopathological damage to the colon. The gut microbial diversity analysis showed that arginine intervention significantly decreased the relative abundance of CR and significantly increased the relative abundance of Akkermansia, Blautia, Enterorhabdus, and Lachnospiraceae, which modified the CR-induced intestinal flora disorder. Notably, arginine showed a dose-dependent effect on the improvement of colitis caused by CR.


Assuntos
Colite , Hordeum , Animais , Camundongos , Citrobacter rodentium , Arginina/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
18.
Nutrients ; 15(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37111225

RESUMO

Inflammatory bowel disease (IBD) represents a highly recurrent gastrointestinal disorder and global public health issue. However, it lacks effective and safe strategies for its control. Although Ginkgo biloba extract (GBE) has been suggested to exhibit preventive and therapeutic activity for the control of IBD, whether its activity is associated with its ability to modulate intestinal microbiota remains to be addressed. To investigate the effect of GBE on controlling IBD, a Citrobacter Rodentium (CR)-induced mouse colitis model was used, and then histopathological examinations, biochemical assays, immunohistochemistry, and immunoblotting were performed to detect histological changes, cytokines, and tight junction (TJ) proteins in the intestine samples. We also studied 16s rRNA to detect changes in intestinal microbiota and used GC-MS to determine the microbiota-related metabolites short chain fatty acids (SCFAs). The results of our studies revealed that pre-treatment with GBE was sufficient for protecting the animals from CR-induced colitis. As a mechanism for GBE activity, GBE treatment was able to modulate the intestinal microbiota and increase the SCFAs capable of decreasing the pro-inflammatory factors and up-regulating the anti-inflammatory factors while elevating the intestinal-barrier-associated proteins to maintain the integrity of the intestines. Accordingly, our results led to a strong suggestion that GBE should be seriously considered in the preventive control of CR-induced colitis and in the development of effective and safe therapeutic strategies for controlling IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , Citrobacter rodentium , RNA Ribossômico 16S , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/prevenção & controle , Ginkgo biloba , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
19.
Gut Microbes ; 15(1): 2192623, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36951501

RESUMO

Pathogenic enteric Escherichia coli present a significant burden to global health. Food-borne enteropathogenic E. coli (EPEC) and Shiga toxin-producing E. coli (STEC) utilize attaching and effacing (A/E) lesions and actin-dense pedestal formation to colonize the gastrointestinal tract. Talin-1 is a large structural protein that links the actin cytoskeleton to the extracellular matrix though direct influence on integrins. Here we show that mice lacking talin-1 in intestinal epithelial cells (Tln1Δepi) have heightened susceptibility to colonic disease caused by the A/E murine pathogen Citrobacter rodentium. Tln1Δepi mice exhibit decreased survival, and increased colonization, colon weight, and histologic colitis compared to littermate Tln1fl/fl controls. These findings were associated with decreased actin polymerization and increased infiltration of innate myeloperoxidase-expressing immune cells, confirmed as neutrophils by flow cytometry, but more bacterial dissemination deep into colonic crypts. Further evaluation of the immune population recruited to the mucosa in response to C. rodentium revealed that loss of Tln1 in colonic epithelial cells (CECs) results in impaired recruitment and activation of T cells. C. rodentium infection-induced colonic mucosal hyperplasia was exacerbated in Tln1Δepi mice compared to littermate controls. We demonstrate that this is associated with decreased CEC apoptosis and crowding of proliferating cells in the base of the glands. Taken together, talin-1 expression by CECs is important in the regulation of both epithelial renewal and the inflammatory T cell response in the setting of colitis caused by C. rodentium, suggesting that this protein functions in CECs to limit, rather than contribute to the pathogenesis of this enteric infection.


Assuntos
Colite , Infecções por Enterobacteriaceae , Microbioma Gastrointestinal , Animais , Camundongos , Citrobacter rodentium , Talina/genética , Escherichia coli/metabolismo , Actinas/metabolismo , Linfócitos T/metabolismo , Colite/microbiologia , Colo/microbiologia , Mucosa Intestinal/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Camundongos Endogâmicos C57BL
20.
Cell Rep ; 42(2): 112084, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36753416

RESUMO

Intestinal mucus barriers normally prevent microbial infections but are sensitive to diet-dependent changes in the luminal environment. Here we demonstrate that mice fed a Western-style diet (WSD) suffer regiospecific failure of the mucus barrier in the small intestinal jejunum caused by diet-induced mucus aggregation. Mucus barrier disruption due to either WSD exposure or chromosomal Muc2 deletion results in collapse of the commensal jejunal microbiota, which in turn sensitizes mice to atypical jejunal colonization by the enteric pathogen Citrobacter rodentium. We illustrate the jejunal mucus layer as a microbial habitat, and link the regiospecific mucus dependency of the microbiota to distinctive properties of the jejunal niche. Together, our data demonstrate a symbiotic mucus-microbiota relationship that normally prevents jejunal pathogen colonization, but is highly sensitive to disruption by exposure to a WSD.


Assuntos
Mucosa Intestinal , Jejuno , Mucina-2 , Animais , Camundongos , Dieta Ocidental , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Intestino Delgado , Mucina-2/genética , Mucina-2/metabolismo , Muco , Citrobacter rodentium/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...